Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124285, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615416

RESUMO

Quinoline yellow (QY), as a food coloring agent, will consume a large number of detoxifying substances in the body after being ingested by the human body, interfering with the normal metabolic functions of the human body, and may cause allergies, diarrhea and other symptoms, as well as a certain degree of carcinogenicity, posing a great threat to human health. As a result, it is critical to develop a fast, sensitive, and effective approach to determining quinoline yellow in food. In this study, carbon dots (N-CQDs) with high fluorescence quantum yield were prepared and used to determine the QY content using the dual mode of internal filtering effect and fluorescence emission shift detection. Both methods showed good linearity in the range of QY concentration of 0.3-3.2 µM, and the detection limits were classified as 2.6 nM and 0.18 µM. In addition, in order to achieve visual detection of QY, fluorescent test strips were constructed using the carbon dots and non-fluorescent qualitative filter paper to make the detection of QY more convenient. This probe presents a novel way for detecting quinoline yellow in food analysis.


Assuntos
Carbono , Nitrogênio , Pontos Quânticos , Quinolinas , Espectrometria de Fluorescência , Pontos Quânticos/química , Carbono/química , Espectrometria de Fluorescência/métodos , Quinolinas/química , Nitrogênio/química , Corantes de Alimentos/análise , Limite de Detecção , Corantes Fluorescentes/química
2.
Toxicol In Vitro ; 96: 105772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199585

RESUMO

Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded.


Assuntos
Compostos Férricos , Corantes de Alimentos , Humanos , Corantes de Alimentos/toxicidade , Células CACO-2 , Espalhamento a Baixo Ângulo , Difração de Raios X , Poeira , Digestão
3.
Food Chem ; 442: 138404, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237295

RESUMO

Aluminum is added to many food colors to change their solubility. This study compares the aluminum-containing food color carmine with its aluminum-free version carminic acid (both E 120), hypothesizing that the addition of aluminum does not only change the color's solubility, but also its effects on human cells. We could show that carmine, but not carminic acid, is taken up by gastrointestinal Caco-2 and umbilical vein endothelial cells (HUVEC). Clear differences between gene expression profiles of Caco-2 cells exposed to carmine, carminic acid or control were shown. KEGG analysis revealed that carmine-specific genes suppress oxidative phosphorylation, and showed that this suppression is associated with neurodegenerative diseases such as Alzheimer and Parkinson disease. Furthermore, carmine, but not carminic acid, increased proliferation of Caco-2 cells. Our findings show that a food color containing aluminum induces different cellular effects compared to its aluminum-free form, which is currently not considered in EU legislation.


Assuntos
Carmim , Corantes de Alimentos , Humanos , Carmim/análise , Alumínio/toxicidade , Células CACO-2 , Células Endoteliais , Corantes de Alimentos/análise , Excipientes
4.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834009

RESUMO

The growing popularity of the use of nutraceuticals in the prevention and alleviation of symptoms of many diseases in humans and dogs means that they are increasingly the subject of research. A representative of the nutraceutical that deserves special attention is turmeric. Turmeric belongs to the family Zingiberaceae and is grown extensively in Asia. It is a plant used as a spice and food coloring, and it is also used in traditional medicine. The biologically active factors that give turmeric its unusual properties and color are curcuminoids. It is a group of substances that includes curcumin, de-methoxycurcumin, and bis-demethoxycurcumin. Curcumin is used as a yellow-orange food coloring. The most important pro-health effects observed after taking curcuminoids include anti-inflammatory, anticancer, and antioxidant effects. The aim of this study was to characterize turmeric and its main substance, curcumin, in terms of their properties, advantages, and disadvantages, based on literature data.


Assuntos
Curcumina , Corantes de Alimentos , Humanos , Cães , Animais , Curcumina/farmacologia , Curcuma , Diarileptanoides , Anti-Inflamatórios , Extratos Vegetais/farmacologia
5.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894807

RESUMO

Food colorants are commonly used as excipients in pharmaceutical and nutraceutical fields, but they have a wide range of other potential applications, for instance, as cytotoxic drugs or mediators of physical antimicrobial treatments. The photodynamic antibacterial activity of several edible food colorants is reported here, including E127, E129, E124, E122, E133, and E150a, alongside Rhein, a natural lipophilic antibacterial and anticancer compound found in medicinal plants. Minimal inhibitory concentration (MIC) values for S. aureus and E. coli showed that E127 and Rhein were effective against both bacteria, while other colorants exhibited low activity against E. coli. In some cases, dark pre-incubation of the colorants with Gram-positive S. aureus increased their photodynamic activity. Adding Rhein to E127 increased the photodynamic activity of the latter in a supportive mode. Optional sensing mechanism pathways of combined E127/Rhein action were suggested. The antibacterial activity of the studied colorants can be ranged as follows: E127/Rhein >> E127 >> E150a > E122 > E124 >> E129 ≈ E133. E127 was also found to exhibit photodynamic properties. Short ultrasonic treatment before illumination caused intensification of E127 photodynamic activity against E. coli when applied alone and especially in combination with Rhein. Food colorants exhibiting photo- and sonodynamic properties may have good potential in food preservation.


Assuntos
Corantes de Alimentos , Corantes de Alimentos/farmacologia , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia
6.
Luminescence ; 38(12): 2073-2085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37747151

RESUMO

Sunitinib is a tyrosine kinase inhibitor used for the treatment of renal cell carcinoma and gastrointestinal stromal tumors. In this study, two spectroscopic methods, spectrofluorometric and spectrophotometric, were utilized to quantify sunitinib in different matrices. In method I, the native fluorescence of erythrosine B was quenched by forming ion-pair complex with increasing quantities of sunitinib. This approach was utilized for measuring sunitinib in its dosage forms and spiked plasma. After excitation at 528 nm, the quenching of fluorescence is linearly related to the concentration across the range of 0.05-0.5 µg mL-1 at 550 nm in Britton-Robinson buffer (pH 4.0), with a correlation value of 0.9999 and a high level of sensitivity with detection limit down to 10 ng mL-1 . Method II relies on spectrophotometric measurements of the produced complex at 550 nm across a range of 0.5-10.0 µg mL-1 , with good correlation value of 0.9999. This method has a detection limit down to 0.16 µg mL-1 . The proposed methodologies were validated according to International Conference on Harmonization (ICH) guidelines with satisfactory results. The stoichiometry of the reaction was determined through the application of Job's method, while the mechanism of quenching was investigated by employing the Stern-Volmer plot. The designated methods were used to estimate sunitinib in its capsules and in spiked human plasma. Additionally, the statistical analysis of the data revealed no substantial differences when compared to previous reported spectroscopic method. Green assessment tools provide further details about the eco-friendly nature of the methods.


Assuntos
Eritrosina , Corantes de Alimentos , Humanos , Eritrosina/química , Sunitinibe , Composição de Medicamentos , Espectrometria de Fluorescência/métodos
7.
Nutrients ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447272

RESUMO

In recent years, artificial additives, especially synthetic food colorants, were found to demonstrate wider properties compared to their natural equivalents; however, their health impact is still not totally mapped. Our study aimed to determine the long-term (30 and 90 days) exposure effect of one of the commonly used artificial food colorants, tartrazine, on NMRI mice. The applied dose of tartrazine referred to the human equivalent dose for acceptable daily intake (ADI). Further, we evaluated its impact on the transcription of a range of epigenetic effectors, members of the DNA methyltransferase (DNMT) as well as histone deacetylase (HDAC) families. Following the exposure, organ biopsies were collected from the lungs, kidneys, liver, and spleen, and the gene expression levels were determined by real-time quantitative reverse transcription PCR (RT-qPCR). Our results demonstrated significant upregulation of genes in the tested organs in various patterns followed by the intake of tartrazine on ADI. Since DNMT and HDAC genes are involved in different steps of carcinogenesis, have roles in the development of neurological disorders and the effect of dose of everyday exposure is rarely studied, further investigation is warranted to study these possible associations.


Assuntos
Corantes de Alimentos , Neoplasias , Doenças do Sistema Nervoso , Humanos , Camundongos , Animais , Tartrazina/análise , Corantes de Alimentos/efeitos adversos , Corantes de Alimentos/análise , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Camundongos Endogâmicos , Neoplasias/genética
8.
Anal Chem ; 95(17): 6836-6845, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37076786

RESUMO

Surface-enhanced Raman scattering (SERS) with the advantages of high sensitivity, nondestructive analysis, and a unique fingerprint effect shows great potential in point-of-care testing (POCT). However, SERS faces challenges in rapidly constructing a substrate with high repeatability, homogeneity, and sensitivity, which are the key factors that restrict its practical applications. In this study, we propose a one-step chemical printing strategy for synthesizing a three-dimensional (3D) plasmon-coupled silver nanocoral (AgNC) substrate (only need about 5 min) without any pretreatments and complex instruments. The galvanic replacement between AgNO3 and Cu sheets will provide both Ag0 for the formation of silver nanostructures and Cu2+ for the polymerization of fish sperm DNA (FSDNA). The protection of AgNCs is facilitated by the crosslinked FSDNA, which can improve the stability of the substrate and promote the control of its coral-like morphology. The obtained substrate displays excellent capacity of signal enhancement due to the 3D plasmon coupling both between nanocoral tentacles and between nanocorals and Cu sheets as well. Therefore, the AgNC substrates display high activity (enhancement factor = 1.96 × 108) and uniformity (RSD < 6%). Food colorants have been widely used in various foods to improve their color, but the inevitable toxicity of colorants seriously threatens food safety. Therefore, the proposed AgNC substrates were used to directly quantify three kinds of weak-affinity food colorant molecules including Brilliant Blue, Allura Red, and Sunset Yellow assisted by the capture by cysteamine hydrochloride (CA), showing the detection limits (S/N = 3) of 0.053, 0.087, and 0.089 ppm, respectively. The SERS method has been further applied in the detection of the three kinds of food colorants in both complex food samples and urine with recoveries of 91-119%. The satisfactory detection results suggest that the facile preparation strategy of AgNC substrates will be widely used in SERS-based POCT to promote the development of food safety and on-site healthcare.


Assuntos
Corantes de Alimentos , Nanopartículas Metálicas , Nanoestruturas , Masculino , Animais , Prata/química , Corantes de Alimentos/análise , Sêmen/química , Análise Espectral Raman/métodos , Impressão Tridimensional , Nanopartículas Metálicas/química
9.
Curr Top Med Chem ; 23(14): 1380-1393, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36650651

RESUMO

Food color additives are used to make food more appetizing. The United States Food and Drug Administration (FDA) permitted nine artificial colorings in foods, drugs, and cosmetics, whereas the European Union (EU) approved five artificial colors (E-104, 122, 124, 131, and 142) for food. However, these synthetic coloring materials raise various health hazards. The present review aimed to summarize the toxic effects of these coloring food additives on the brain, liver, kidney, lungs, urinary bladder, and thyroid gland. In this respect, we aimed to highlight the scientific evidence and the crucial need to assess potential health hazards of all colors used in food on human and nonhuman biota for better scrutiny. Blue 1 causes kidney tumor in mice, and there is evidence of death due to ingestion through a feeding tube. Blue 2 and Citrus Red 2 cause brain and urinary bladder tumors, respectively, whereas other coloring additives may cause different types of cancers and numerous adverse health effects. In light of this, this review focuses on the different possible adverse health effects caused by these food coloring additives, and possible ways to mitigate or avoid the damage they may cause. We hope that the data collected from in vitro or in vivo studies and from clinical investigations related to the possible health hazards of food color additives will be helpful to both researchers and the food industry in the future.


Assuntos
Corantes de Alimentos , Animais , Humanos , Camundongos , Aditivos Alimentares/efeitos adversos , Corantes de Alimentos/efeitos adversos , Fígado , Estados Unidos , United States Food and Drug Administration
10.
Zoo Biol ; 42(2): 322-327, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36074031

RESUMO

The objectives of this study were to develop a fecal marking protocol to distinguish male from female samples during the echidna breeding season and to determine if normalizing fecal progesterone metabolite data for inorganic content improves the detection of biologically relevant changes in metabolite concentrations. Over a period of 6 weeks, four echidnas were provided with green food coloring powder mixed into 20 g of their regular feed with the dose adjusted weekly by 0.05 g. The proportion of organic (feces) versus inorganic matter (sand) in the fecal samples of three echidnas was determined by combustion of organic matter. Hormonal data was then expressed as metabolite concentration per total dry mass (with sand) of extracted sample versus metabolite concentration per total mass of organic material (without sand). The optimal dose of food coloring powder was 0.30 g: this was excreted in the feces of all echidnas within 24 h of consumption with color present for two consecutive days. Correction for inorganic content (sand) did not significantly affect variability of fecal progesterone metabolite levels (mean CV ± SE with sand: 142.3 ± 13.3%; without sand: 127.0 ± 14.4%; W = 6, p = .2500), or the magnitude of change from basal to elevated fecal progesterone metabolite concentrations (mean ± SE with sand: 8.4 ± 1.7; without sand: 6.6 ± 0.5, W = 10, p = .1250). Furthermore, progesterone metabolite concentrations before and after correction for sand contamination correlated strongly (r = .92, p = < .001). These methods will facilitate future reproductive endocrinology studies of echidna and other myrmecophagous species.


Assuntos
Corantes de Alimentos , Tachyglossidae , Animais , Masculino , Feminino , Progesterona , Pós , Areia , Animais de Zoológico , Fezes
11.
Artigo em Inglês | MEDLINE | ID: mdl-36305852

RESUMO

Pearlescent pigments are used as colourants to increase the attractiveness of food products, especially in the patisserie and confectionery sector. They can be seen as composite materials and consist of thin potassium aluminium silicate (E 555, mica) platelets as carrier material, coated with a thin metal oxide layer of TiO2 (E 171) and/or iron oxides (E 172). The European Food Safety Authority stated in 2020 that mica-based pearlescent pigments as a whole should be evaluated as new food additives. Obtaining dependable data for particle size and layer thickness of these pigments is crucial both for the demanded food additive evaluation itself and also for the nanomaterial labelling assessment of products containing these food colourants according to the 'Food Information to Consumers' regulation. Since it was found in a previous study on TiO2-containing pearlescent pigments (silver and golden coloured) that the coating consisted of nanoscaled constituent titanium oxide particles, in this follow-up study we investigated whether Fe2O3-containing pearlescent pigments exhibit a similar nanostructured morphology. For this purpose, five commercially-available food products containing these pigments were investigated. Static light scattering and flow particle image analysis were used as screening methods to determine the mica platelet size. Scanning electron microscopy combined with energy-dispersive X-ray spectroscopy was used for nanostructure analysis of the metal oxide coating. The carrier mica platelets were 34-96 µm in diameter and 300-800 nm thick. The coating thickness was found to be in the range of 75-105 nm, with the constituent round shaped iron oxide particles contained therein having a minimum Feret diameter of 37-64 nm.


Assuntos
Corantes de Alimentos , Corantes de Alimentos/química , Seguimentos , Titânio/química , Compostos Férricos , Óxidos/química , Aditivos Alimentares/química
12.
Food Chem Toxicol ; 169: 113398, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36096291

RESUMO

It is necessary to determine whether synthetic dyes are present in food since their excessive use has detrimental effects on human health. For the simultaneous assessment of tartrazine and Patent Blue V, a novel electrochemical sensing platform was developed. As a result, two artificial azo colorants (Tartrazine and Patent Blue V) with toxic azo groups (-NN-) and other carcinogenic aromatic ring structures were examined. With a low limit of detection of 0.06 µM, a broad linear concentration range 0.09µM to 950µM, and a respectable recovery, scanning electron microscopy (SEM) was able to reveal the excellent sensing performance of the suggested electrode for patent blue V. The electrochemical performance of an electrode can be characterized using cyclic and differential pulse voltammetry, and electrochemical impedance spectroscopy. Moreover, the classification model was created by applying binary classification assessment using enhanced artificial intelligence comprises of support vector machine (SVM) and Genetic Algorithm (GA), respectively, a support vector machine and a genetic algorithm, which was then validated using the 50 dyes test set. The best binary logistic regression model has an accuracy of 83.2% and 81.1%, respectively, while the best SVM model has an accuracy of 90.3% for the training group of samples and 81.1% for the test group (RMSE = 0.644, R2 = 0.873, C = 205.41, and = 5.992). According to the findings, Cu-BTC MOF (copper (II)-benzene-1,3,5-tricarboxylate) has a crystal structure and is tightly packed with hierarchically porous nanomaterials, with each particle's edge measuring between 20 and 37 nm. The suggested electrochemical sensor's analytical performance is suitable for foods like jellies, condiments, soft drinks and candies.


Assuntos
Inteligência Artificial , Compostos Azo , Técnicas Eletroquímicas , Corantes de Alimentos , Contaminação de Alimentos , Corantes de Rosanilina , Tartrazina , Humanos , Compostos Azo/análise , Compostos Azo/isolamento & purificação , Técnicas Eletroquímicas/métodos , Eletrodos , Corantes de Alimentos/análise , Corantes de Alimentos/isolamento & purificação , Contaminação de Alimentos/prevenção & controle , Corantes de Rosanilina/análise , Corantes de Rosanilina/isolamento & purificação
13.
Odovtos (En línea) ; 24(2)ago. 2022.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1386603

RESUMO

Abstract The aim of this in vitro study is to investigate the effects of acidic beverages on the discoloration of bulk-fill composites with different viscosities. 144 disc-shaped specimens (8mm diameter × 2mm thick) were prepared from four different composite resins including a nanohybrid (Filtek Ultimate), two packable bulk- fill (Filtek Bulk Fill, Tetric N Ceram Bulk Fill), and a flowable bulk-fill composite (Tetric N Flow Bulk Fill). The specimens of each group were divided into 3 subgroups and submerged in distilled water, orange juice and coke (n=12). Color difference (ΔE) were measured using CIELab color space and a compact spectrophotometer (VITA Easyshade) at baseline and after 30 days of immersion. Data were analyzed using two- way ANOVA and Tukeys HSD post-hoc tests (P2.7) was observed for all bulk-fill composites tested. It can be speculated that orange juice has a more negative effect on the color stability compared to coke. Additionally, flowable bulk-fill composite was more prone to discoloration than condensable bulk-fill composites.


Resumen El objetivo de este estudio fue investigar los efectos de las bebidas ácidas en la decoloración de resinas compuestas tipo Bulk con diferentes viscosidades. Se prepararon 144 muestras en forma de disco (8mm de diámetro x 2mm de grosor) a partir de cuatro resinas compuestas diferentes que incluyen un nanohíbrido (Filtek Ultimate), dos de pasta condensables tipo Bulk (Filtek Bulk Fill, Tetric N Ceram Bulk Fill) y una fluida (Tetric N Flow Bulk Fill). Las muestras de cada grupo se dividieron en 3 subgrupos y se sumergieron en agua destilada, jugo de naranja y Coca-Cola (n=12). La diferencia de color (ΔE) se midió utilizando el CIELab y un espectrofotómetro compacto (VITA Easyshade) al inicio y después de 30 días de inmersión. Los datos se analizaron mediante ANOVA bidireccional y pruebas post-hoc HSD de Tukey (P2,7) para todos los materiales resinosos. Se puede especular que el jugo de naranja tiene un efecto más negativo sobre la estabilidad del color en comparación con la Coca-Cola. Además, la resina fluida fue más propensa a la decoloración que las resinas condensables.


Assuntos
Descoloração de Dente , Resinas Compostas , Corantes de Alimentos
14.
Food Chem Toxicol ; 167: 113277, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35803363

RESUMO

In recent days, the existence of several food colorants has an impact on human health issue that may induce major carcinogenic effects. Therefore, the removal of food colorants must be made in accordance with the necessity of health awareness in life. Photocatalyst treatment using semiconductors shows a promising way to solve these issues. In this relation, this paper presents the novel nanoflower shaped NiO/CuO (0.9:0.1 M and 0.5:0.5 M) photocatalysts developed via co-precipitation method for the destruction of methyl orange (MO) as a model food colorant under visible light irradiation. The X-ray diffraction result proposed that the composite catalysts consist of mixed heterostructures (cubic and monoclinic) with no other impurities. From the images of transmission electron microscope, the catalyst presents nano spherical and cubical mixed morphologies. Besides, NiO/CuO (0.5:0.5 M) catalyst exhibits agglomeration due to the highly contented CuO. The Energy Dispersive X-ray spectra gave the elemental configuration without other impurity traces. The Brunauer-Emmett-Teller surface area of NiO/CuO (0.9:0.1 M) catalyst occupies higher surface area. Unfortunately, NiO/CuO (0.5:0.5 M) sample has lower surface area due to the agglomerated particles. The UV-vis spectra confirmed that the absorption of the catalyst lies in higher wavelength region occupying small band gap. Moreover, the visible light activity of the catalysts showed 75.3% (0.9:0.1 M) and 40.2% (0.5:0.5 M) degrading efficiencies. At the end, the highly efficient catalyst was experienced photocatalytic activity upto 5 repeated runs and the efficiency remained the same. Therefore, the catalyst NiO/CuO (0.9:0.1 M) has prompted the successful degradation of MO food colorant under visible light.


Assuntos
Corantes de Alimentos , Nanoestruturas , Catálise , Cobre/química , Humanos
15.
Food Chem Toxicol ; 166: 113196, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35691466

RESUMO

Analytical techniques as strong, precise, and expensive are necessary for monitoring food and water safety for contaminants, microorganisms, and allergies that might be harmful if used. Sudan dyes are commonly utilized as an ingredient in food dye substances and a variety of industrial items. These colors are classified as three carcinogens and are linked to liver and bladder cancers. They are not authorized for human consumption by the International Agency for Research on Cancer (IARC) and are not permitted to be used by the Food Standards Agency or the European Union. This article describes electrochemical dye analysis beside the numerous electrochemical sensors utilized to identify these dyes as a food colorant and water. As a result, the qualities, chemistry, and toxicity of dyes as food colorants and industrial goods in Sudan have been investigated in this study. Sudan dyes have been thoroughly studied, and many electrochemical sensors have been developed to define and monitor these dyes in food colorants. As a result, current electrochemical sensors have been found to be neither mass-production nor cost-effective. Mostly, the synthesis of high-performance materials needs high knowledge, and the production of electrode surfaces is remained difficult due to labor-intensive and time-consuming activities.


Assuntos
Corantes de Alimentos , Carcinógenos , Corantes/toxicidade , Técnicas Eletroquímicas , Humanos , Água/química , Poluição da Água
16.
Molecules ; 27(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35630767

RESUMO

(1) Background: Dyes play an important role in food, medicine, textile, and other industries, which make human life more colorful. With the increasing demand for food safety, the development of natural dyes becomes more and more attractive. (2) Methods: The literature was searched using the electronic databases PubMed, Web of Science, and SciFinder and this scoping review was carried out following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). (3) Results: 248 articles were included in this review. This review summarizes the research progress on natural dyes in the last ten years. According to structural features, natural dyes mainly include carotenoids, polyphenols, porphyrins, and alkaloids, and some of the newest dyes are summarized. Some pharmacological activities of carotenoids, anthocyanin, curcumin, and betalains in the last 10 years are summarized, and the biological effects of dyes regarding illumination conditions. The disadvantages of natural dyes, including sources, cost, stability, and poor bioavailability, limit their application. Here, some feasible strategies (potential resources, biotechnology, new extraction and separation strategies, strategies for improving stability) are described, which will contribute to the development and utilization of natural dyes. (4) Conclusion: Natural dyes show health benefits and potential in food additives. However, it is necessary for natural dyes to pass toxicity tests and quality tests and receive many regulatory approvals before their final entry into the market as food colorants or as drugs.


Assuntos
Corantes , Corantes de Alimentos , Antocianinas , Betalaínas , Carotenoides , Corantes de Alimentos/química , Humanos
17.
Food Chem ; 387: 132893, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35397275

RESUMO

As a means to evaluate the potential of carrot anthocyanins as food colorants and nutraceutical agents, we investigated the physicochemical stability and antioxidant capacity of purple carrot extracts under different pH (2.5-7.0) and temperature (4-40 °C) conditions, in comparison to a commercial synthetic (E131) and a natural grape-based (GRP) colorant. During incubation, the colorants were weekly-monitored for various color parameters, concentration of anthocyanins and phenolics, and antioxidant capacity. Carrot colorants were more stable than GRP; and their thermal stability was equal (at 4 °C) or higher than that of E131 (at 25-40 °C). Carrot anthocyanins had lower degradation rate at low pH and temperature, with acylated anthocyanins (AA) being significantly more stable than non-acylated anthocyanins (NAA). Anthocyanins acylated with feruloyl and coumaroyl glycosides were the most stable carrot pigments. The higher stability of carrot colorants is likely due to their richness in AA and -to a lesser extent- copigmentation with other phenolics.


Assuntos
Daucus carota , Corantes de Alimentos , Antocianinas/química , Antioxidantes/metabolismo , Cor , Daucus carota/química , Corantes de Alimentos/química , Cinética , Fenóis/metabolismo , Extratos Vegetais/química
18.
Food Chem Toxicol ; 165: 113075, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35487338

RESUMO

Brown HT and carmoisine, which are the most used dyestuffs in pharmaceuticals, textiles, cosmetics and foods, are important components of the Azo family. Although the Azo group is not toxic or carcinogenic under normal conditions, these dyestuffs require great care due to the reduction of the Azo functional group to amines. In particular, fast, reliable, easy, on-site and precise determinations of these substances are extremely necessary and important. In this review, the properties, applications, and electrochemical determinations of brown HT and carmoisine, which are used as synthetic food colorants, are discussed in detail. Up to now, sensor types, detection limits (LOD and LOQ), and analytical applications in the developed electrochemical strategies for both substances were compared. In addition, the validation parameters such as the variety of the sensors, sensitivity, selectivity and electrochemical technique in these studies were clarified one by one. While the electrochemical techniques recommended for brown HT were mostly used for the removal of dyestuff, for carmoisine they included fully quantitative centered studies. The percentiles of voltammetric techniques, which are the most widely used among these electroanalytical methods, were determined. The benefits of a robust electrochemical strategy for the determination of both food colors are summed up in this review. Finally, the brown HT and carmoisine suggestions for future perspectives in electrochemical strategy are given according to all their applications.


Assuntos
Corantes de Alimentos , Naftalenossulfonatos , Compostos Azo , Técnicas Eletroquímicas , Naftalenossulfonatos/química
19.
Drug Chem Toxicol ; 45(6): 2852-2859, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34753371

RESUMO

Food colorants are important food additives that not only enhance the appearance of food but also appetite. These can be obtained from natural and synthetic sources, but synthetic sources are more popular, efficient, and potential. Non-permitted food colorants (NPFCs) are banned, but their injudicious use in developing countries associated with various adverse health effects. They have potentially toxic effects on the body organs like the brain, liver, kidney, spleen, gut, etc. In view of their toxicity pattern, the present study aims to investigate the effect of three NPFCs (MY: Metanil yellow; MG: Malachite green; SIII: Sudan III) on oxidative stress, mitochondrial complexes, neurochemicals, and histological changes in the cerebellum of rats. Rats treated with MY (430 mg/kg), MG (13.75 mg/kg), SIII (250 mg/kg), and their mixtures (YGR) (MY 143.33 + MG 4.52 + SIII 83.33 mg/kg) p.o. for 60 days showed a significant increase in lipid peroxidation and decreased level of reduced glutathione, superoxide dismutase, and catalase activity as compared to controls. An increase in the activity of acetylcholinesterase (AChE) and a significant decrease in the activity of monoamine oxidase-B (MAO-B) and mitochondrial complex I and II was also observed in NPFCs treated rats as compared to controls. Further, the histological study also revealed the loss of Purkinje neurons in the cerebellum of the rat brain. The results of the present study indicate that NPFCs exposure to rats enhances oxidative stress and alters the activity of neurochemicals and mitochondrial complexes which could further lead to neuronal loss and behavioral dysfunctions.


Assuntos
Corantes de Alimentos , Síndromes Neurotóxicas , Animais , Ratos , Acetilcolinesterase/metabolismo , Encéfalo , Catalase/metabolismo , Cerebelo/metabolismo , Cerebelo/patologia , Corantes de Alimentos/toxicidade , Glutationa/metabolismo , Peroxidação de Lipídeos , Monoaminoxidase , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Estresse Oxidativo , Superóxido Dismutase/metabolismo
20.
Food Chem Toxicol ; 159: 112725, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856315

RESUMO

Synthetic food colorants are extensively used across the globe regardless of the fact that they induce deleterious side effects when used in higher amounts. In this work, a novel electrochemical sensor based on nickel nanoparticles doped lettuce-like Co3O4 anchored graphene oxide (GO) nanosheets was developed for effective detection of sulfonated azo dye sunset yellow widely used as a food colorant. Hydrothermal synthesis was adopted for the preparation of lettuce-like spinel Co3O4 nanoparticles and Ni-Co3O4 NPs/GO nanocomposite was prepared using ecofriendly and economical sonochemical method. The prepared ternary nanocomposite meticulously fabricated on a screen-printed carbon electrode exhibited remarkable electrocatalytic activity towards sunset yellow determination. This is apparent from the resultant well-defined and intense redox peak currents of Ni-Co3O4 NPs/GO nanocomposite modified electrode at very low potentials. The developed sunset yellow sensor exhibited a high sensitivity of 4.16 µA µM-1 cm-2 and a nanomolar detection limit of 0.9 nM in the linear range 0.125-108.5 µM. Furthermore, experiments were conducted to affirm excellent stability, reproducibility, repeatability, and selectivity of proposed sensor. The practicality of sunset yellow determination using the developed sensor was analyzed in different varieties of food samples including jelly, soft drink, ice cream, and candy resulting in recovery in the range of 96.16%-102.56%.


Assuntos
Compostos Azo/análise , Técnicas Eletroquímicas/métodos , Corantes de Alimentos/análise , Nanopartículas Metálicas/química , Nanocompostos/química , Óxido de Alumínio/química , Cobalto/química , Grafite , Limite de Detecção , Modelos Lineares , Óxido de Magnésio/química , Níquel/química , Óxidos/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA